Algebra II	Homework 1122	Name:
Dr. Paul L. Bailey	Monday, November 22, 2021	

Due Tuesday, November 23, 2021. Do not copy. Do not write anything you do not understand.

Definition 1. Let f be a function defined on \mathbb{R} . We say that f is *even* if f(-x) = f(x) for all $x \in \mathbb{R}$. We say that f is *odd* if f(-x) = -f(x) for all $x \in \mathbb{R}$.

Proposition 1. A polynomial is even if and only if all of its monomial summands have even degree. A polynomial is odd if and only if all of its monomial summands have odd degree.

Problem 1. Determine if the given polynomial is even, odd, or neither.

(a)
$$x^2 - 25$$
 (d) $(x - 1)(x - 3)^2(x - 5)^3$

(b)
$$8x - 3x^2$$
 (e) $x^5 - x^3 + 1$

(c)
$$x^3 - 7x$$
 (f) $2x$

Problem 2. Let $f(x) = x^2 + bx + c$, where $b, c \in \mathbb{R}$. Suppose f(-7+2i) = 0. Find b and c.

Problem 3. Let $f(x) = x^3 + bx^2 + cx + d$, where $b, c, d \in \mathbb{R}$. Suppose f(3) = 0 and f(5+i) = 0. Find b, c, and d.

Definition 2. Let $A \subset \mathbb{R}$. We say that A is *connected* if, for every $a, b \in A$, if a < x < b, then $x \in A$.

Definition 3. An *interval* is a connected set of real numbers which contains more than one element. There are nine types:

- $[a,b] = \{x \in \mathbb{R} \mid a \le x \le b\}$
- $(a,b) = \{x \in \mathbb{R} \mid a < x < b\}$
- $\bullet \ [a,b) = \{x \in \mathbb{R} \mid a \leq x < b\}$
- $\bullet \ (a,b] = \{x \in \mathbb{R} \mid a < x \leq b\}$

• $(-\infty, b) = \{x \in \mathbb{R} \mid x < b\}$ • $[a, \infty) = \{x \in \mathbb{R} \mid a \le x\}$ • $(a, \infty) = \{x \in \mathbb{R} \mid a < x\}$ • $(-\infty, \infty) = \mathbb{R}$

• $(-\infty, b] = \{x \in \mathbb{R} \mid x \le b\}$

Problem 4. Write the following sets in interval notation.

- (a) The set of all real numbers between 3 and 11, including 3 and 11.
- (b) The set of all real numbers between -2 and $3.\overline{3}$, including -2 but excluding $3.\overline{3}$.
- (c) The set of all real number strictly less than 123.
- (d) $\{x \in \mathbb{R} \mid x \ge \pi\}$
- (e) $\{x \in \mathbb{R} \mid x^2 \le 25\}$

Problem 5. Solve the following inequalities. Write the solution in interval notation.

- (a) $x \ge 12$
- (b) $x^2 \le 7$
- (c) $(x-8)^2 \le 0$
- (d) $x^2 2x \ge 15$
- (e) $x^2 2x \le 15$